References:-
Anderson, R. G. W. (1998) The caveolae
membrane system. Ann.Rev.Biochem. 67, 199-225.
Bartoli, M., Monneron, A. & Ladant,
D. (1998) Interaction of calmodulin with striatin, a WD-repeat protein
present in neuronal dendritic spines., J.Biol.Chem. 273,
22248-22253.
Cary, L. A. & Cooper, J. A. (2000)
Molecular switches in lipid rafts. Nature. 404, 945-947.
Czarny, M., Fiucci, G., Lavie, Y., Banno, Y.,
Nozawa, Y. & Liscovitch, M. (2000) Phospholipase D2: functional
interaction with caveolin in low-density membrane microdomains. FEBS
letters.
Dietzen, D. J., Hastings, W. R. &
Lublin, D. M. (1995) Caveolin is palmitoylated on multiple cysteine
residues. Palmitoylation is not necessary for localization of caveolin
to caveolae. J.Biol.Chem. 270, 6838-6842.
Engelman, J.A.,
Wykoff, C.C., Yasuhara, S., Song, K.S., Okamoto, T., and Lisanti, M.P. (1997). Recombinant expression of caveolin-1 in
oncogenically transformed cells abrogates anchorage-independent
growth. J. Biol. Chem. 272, 16364-16381.
Foger, N., Marhaba, R. & Zoller, M. (2001)
Involvement of CD44 in cytoskeleton rearrangement and raft
reorganization in T cells. J.Cell Sci. 114, 1169-1178.
Gaillard, S., Bartoli, M., Castets, F. &
Monneron, A. (2001) Striatin, a calmodulin-dependent scaffolding
protein, directly binds caveolin-1. FEBS letters. 508, 49-52.
Galbiati, F., Engelman, J. A., Volonte, D.,
Zhang, X. L., Minetti, C., Li, M., Hou jr, H., Kneitz, B., Edelman, W.
& Lisanti, M. P. (2001) Caveolin-3 null mice show a loss of
caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein
complex, and T-tubule abnormalities. J. Biol.Chem. 276,
21425-21433.
Galbiati, F., Volonte, D.,
Engelman, J.A., Watanabe, G., Burk, R., Pestell, R., and Lisanti, M.P.
(1998). Targeted down-regulation of caveolin-1 is sufficient to drive
cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO
J. 17: 6633-6648.
Huang, C.-s., Zhou, J., Feng, A. K., Lynch, C.
C., Klumperman, J., DeArmond, S. J. & Mobley, W. C. (1999) Nerve
growth factor signalling in caveolae-like domains at the plasma
membrane. J.Biol.Chem. 274, 36707-36714.
Jacobson, K. & Dietrich, C. (1999) Looking
at lipid rafts? Trends Cell Biol. 9, 87-91.
Ko, Y.-G., Liu, P., Pathak, R. K., Craig, L. C.
& Anderson, R. G. W. (1998) Early effects of PP60v-src
kinase activation on caveolae. J.Cellular Biochem. 71,
524-535.
Kurzchalia, T. V. & Parton, R. G. (1999)
Membrane microdomains and caveolae. Curr.Op.Cell Biol. 11,
424-431.
Lee,
S.W., Reimer, C.L., Oh, P., Campbell, D.B., and Schnitzer, J.E.
(1998). Tumor cell growth inhibition by caveolin re-expression in
human breast cancer cells. Oncogene 16: 1391-1397.
Massimino, M. L., Griffoni, C., Spisni,
E., Toni, M. & Tomasi, V. (2002) Involvement of caveolae and
caveolae-like domains in signalling cell survival and angiogenesis. Celluar
Signalling. 14, 93-98.
Mundy, D. I., Machleidt, T., Ying,
Y.-s., Anderson, R. G. W. & Bloom, G. S. (2002) Dual control of
caveolar membrane traffic by microtubules and the actin cytoskeleton. J
Cell Sci. 115, 4327-4339.
Nichols, B. J. (2002) A distinct class
of endosome mediates clathrin-independent endocytosis to the Golgi
complex. Nature Cell Biol. 4, 374-378.
Pelkmans, L., Kartenbeck, J. &
Helenius, A. (2001) Caveolar endocytosis of simian virus 40 reveals a
new two-step vesicular-transport pathway to the ER. Nature Cell Biol.
3, 473-483.
Pelkmans, L., Puntener, D. &
Helenius, A. (2002) Local actin polymerization and dynamin recruitment
in SV40-induced internalization of caveolae. Science. 296,
535-539.
Pike, L. J., Han, X., Chung, K.-N.
& Gross, R. W. (2002) Lipid rafts are enriched in arachidonic acid
and plasmenylethanolamine and their composition is independent of
caveolin-1 expression: A quantitative electrospray ionization/mass
spectroscopic analysis. Biochemistry. 41, 2075-2088.
Razani, B. & Lisanti, M. P. (2001) Caveolin-deficient
mice: insights into caveolar function and human disease. J. Clin.
Invest. 108, 1553-1561.
Ringerike, T., Blystad, F. D., Levy,
F. O., Madshus, I. H. & Stang, E. (2002) Cholesterol is important in
control of EGF receptor kinase activity but EGF receptors are not
concentrated in caveolae. J.Cell Sci. 115, 1331-1340.
Rothberg, K. G., Heuser, J. E., Donzell, W. C.,
Ying, Y.-S., Glenney, J. R. & Anderson, R. G. L. (1992) Caveolin, a
protein component of caveolae membrane coats. Cell. 68, 673-682.
Sargiacomo, M., Sudol, M., Tang, Z. L. &
Lisanti, M. P. (1993) Signal transducing molecules and glycosyl-phosphatidylinositol-linked
protein form a caveolin-rich insoluble complex in MDCK cells. J.Cell
Biol. 122, 789-8807.
Shin, J.-S., Gao, Z. & Abraham, S. N.
(2000) Involvement of cellular caveolae in bacterial entry into mast
cells. Science. 289, 785-788.
Sinclair, J. F. & O'Brien, A. D.
(2002) Cell surface-localized nucleolin is a eukaryotic receptor for the
adhesin intimin-g of enterohemorrhagic Escherichia coli 0157:H7.,
J.Biol.Chem. 277, 2876-2885.
Sowa, G., Pypaert, M. & Sessa, W. C. (2001)
Distinction between signaling mechanisms in lipid rafts vs. caveolae. PNAS.
98, 14072-14077.
Sternberg, P. W. & Schmid, S. L. (1999)
Caveolin, cholesterol and Ras signalling. Nature Cell Biol. 1,
E35-E37.
Thompsen, P., Roepstorff, K., Stahlhut, M.
& van Deurs, B. (2002) Caveolae are highly immobile plasma membrane
microdomains, which are not involved in constitutive endocytis
trafficking. Mol.Biol. Cell. 13, 238-250.
Uittenbogaard, A., Everson, W. V., Matveev, S.
V. & Smart, E. J. (2002) Cholesteryl ester is transported from
caveolae to internal membranes as part of a caveolin-annexin II
lipid-protein complex. J.Biol.Chem. 277, 4925-4931.
van Meer, G. (2001) Caveolin, cholesterol, and
lipid drops. J.Cell Biol. 152, F29-F34.
Wary, K. K., Mariotti, A., Zurzolo, C. &
Giancotti, F. G. (1998) A requirement for calveolin-1 and associated
kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell.
94, 625-634.
Watt, S. A., Kular, G., Fleming,
I. N., Downes, C. P. & Lucocq, J. M. (2002) Subcellular localization
of phosphatidylinositol 4,5-bisphosphate using the plackstrin homology
domain of phospholipase Cd1.
Biochem. J. 363, 657-666.
Waugh, M. G., Lawson, D. & Hsuan, J. J.
(1999) Epidermal growth factor receptor activiation is localized within
low-buoyant density, non-caveolar membrane domains. Biochem.J. 337,
591-597.
Xiao, Z. & Devreotes, P. N. (1997)
Identification of detergent resistant plasma membrane microdomains in Dictyostelium:
enrichment of signal transduction proteins. Mol.Biol.Cell. 8,
855-869. |